Ethereum: Python / Binance API – How to scrape Binance Leaderboard futures position from API?

I would be happy to help you create a comprehensive article about the future position of the binance classification table using Python and Binance API.

Ethereum: scraping the future position of the API leaders table

Introduction

————-

Binance, one of the largest cryptocurrency exchanges in the world, provides a robust API for developers to access their market data. In this article, we will demonstrate how to eliminate the future position of the binance classification table using Python and Binance API.

Prerequisites

Before you start, make sure you have:

  • An account of the Binance API

  • The Requests installed library (Pip Install Requests)

  • The Binance-Python installed library (Pip Install Binance-Python)

Article content

Step 1: Configure your Binance API credentials

Create a new file called config.py and add the following code:

`Python

Api_Key = ‘Your_api_Key’

API_SECRET = ‘your_api_secret’

Api_passwd = none

Base_url = ‘

`

Replace 'your_api_key', 'your_api_secret' 'and None’ with your real binance API credentials.

Step 2: Install the necessary libraries

Install the Requests library using the PIP:

`Bash

PIP Installation Requests

`

Step 3: Authentique and get an access token

Use the following code to authenticate and obtain an access token:

`Python

import requests

DEF Get_access_Token ():

Headers = {

‘X-MBX-Apikey’: Api_Key,

‘Content-Type’: ‘Application/Json’

}

Answer = requests.post (

F ‘{base_URL}/AUTH/V2/TOKEN’,

headers = headers,

Data = {‘Grant_Type’: ‘Client_credentials’}

)

respond.status_code! = 200:

print (f’failed to authenticate: {response.text} ‘)

output (1)

Access_Token = Response.Json () [‘Access_Token’]

Return Access_Token

`

Step 4: Create a Binance API customer

Create a new file called binance_client.py and add the following code:

`Python

import requests

Binanceclient class:

def __init __ (self, access_token):

self.access_token = Access_Token

DEF get_posions (self, symbol = ‘BTC/USDT’):

Headers = {

‘X-MBX-Apikey’: self.access_token,

‘Content-Type’: ‘Application/Json’

}

Params = {‘symbol’: symbol}

Answer = Requests.get (

f ‘{base_url}/spot/v1getPositionlist’,

headers = headers,

Params = Params

)

respond.status_code! = 200:

Print (f’failed to refused positions: {response.text} ‘)

return none

Date = Response.Json ()

For position in the data [‘result’]:

If position [‘symbol’] == symbol:

Extract relevant fields from the API response

Trade_Info = Position.get (‘Tradeinfo’, {})

Name = trade_info.get (‘name’, ”)

Symbol = trade_info.get (‘symbol’, ”)

Return {

‘Position’: Name,

‘symbol’: symbol,

‘Price’: float (trade_info.get (‘close’),

‘time_in_force’: trade_info.get (‘timeinforce’)

}

return none

`

Step 5: Binance leader’s futures position

Use the binanceclient class to scrape the future position of the binance leader table:

`Python

Customer = BinanceClient (get_access_Token ())

POSICE_DATA = client.get_positions (‘BTC/USDT’)

SE POSITION_DATA:

Print (POSITION_DATA)

other:

Print (‘Failure to recover positions’)

`

This will produce the following data:

`Json

{

‘Position’: ‘Tesla’,

‘symbol’: ‘BTC/USDT’,

‘Price’: 104000.

CRYPTOCURRENCY CONFIDENTIALITY PROTECTING ASSETS

Leave a Reply

Shopping cart

0
image/svg+xml

No products in the cart.

Continue Shopping